China wholesaler AC Premium Efficiency Electric Motor 415 660V Induction Electrical Motor vacuum pump and compressor

Product Description

Product Description

 

Three Phase Asynchronous motor is the AC motors, the modular for 3 phase motor offers millions of possible drive combinations.

For the high efficiency electric motor, we have YE3, YE4, YE5 series, from 0.37kW to 315kW. For different voltage, frequency and different power, we can do the customized.

 Product Description
 

MOTOR TYPE Asynchronous motor, YE3, YE4, YE5.
STRUCTURE Iron Cast or Aluminum Housing, Customized.
PROTECTION CLASS IP54, IP55.
INSULATION CLASS Class F/Customized.
VOLTAGE 380V, 400V, 415V, 440V, 660V, Customized.
FREQUENCY 50Hz(60Hz Available).
EFFICIENCY IE3, IE4, IE5, 
OUTPUT POWER 0.37kW~315kW.
PHASE Three Phase.
POLE 2pole, 4pole, 6pole, 8pole, 10pole.
COOLING METHOD IC 411/Customized.
DUTY S1 (24Hour continuous working).
AMBIENT TEMPRETURE -15°C≤ 0 ≤ 40°C.
ALTITUDE Not exceeding 1000m above sea level
MOUNTING TYPE B3,B5,B35, V1, V3,Customized.
STHangZhouRD IEC International Standard, China CCC, ISO 9001, CE.
PACKAGE Carton or Wooden Case, well protection, easy loading and delivery. 
APPLICATION Water Pump, Assembly line, Air Compressor, Packing and Food Machinery, Mill Machinery, fan, and other equipment.
WARRANTY 1 year except for the wear parts.
DELIVERY TIME 10-30 working days.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can induction motors be adapted for use in both residential and industrial settings?

Yes, induction motors can be adapted for use in both residential and industrial settings. Here’s a detailed explanation:

Induction motors are versatile and widely used in various applications due to their robustness, efficiency, and reliability. They can be found in both residential and industrial environments, albeit with some variations in design and performance characteristics.

Residential Use:

  • In residential settings, induction motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps.
  • These motors are typically smaller in size and power compared to their industrial counterparts, as they are designed to meet the specific requirements of residential applications.
  • Residential induction motors are often single-phase motors, as most residential electrical systems are single-phase.
  • They are designed for easy installation, low noise operation, and energy efficiency to meet the demands of residential users.
  • These motors are typically optimized for specific applications, such as providing the necessary torque and speed control for appliances like washing machines or maintaining the desired temperature in air conditioners.

Industrial Use:

  • In industrial settings, induction motors are widely employed in a wide range of applications, including pumps, compressors, conveyor systems, machine tools, fans, blowers, and many more.
  • Industrial induction motors are available in a wide range of power ratings and sizes, allowing them to meet the diverse needs of industrial processes.
  • They are often three-phase motors, as most industrial electrical systems utilize three-phase power distribution.
  • Industrial motors are designed to handle heavy loads, operate under harsh conditions, and provide high levels of reliability and durability.
  • These motors can be adapted for specific industrial requirements, such as motors with explosion-proof enclosures for hazardous environments or motors with enhanced protection against dust and moisture.
  • Industrial induction motors may also incorporate advanced control features, such as variable frequency drives (VFDs), to enable precise speed control, energy savings, and integration into automated industrial systems.

Adaptability:

While there are differences in design and performance characteristics between residential and industrial induction motors, the fundamental principles and technology behind them remain the same. Induction motors can be adapted to meet the specific needs of both residential and industrial settings by adjusting factors such as size, power rating, number of phases, construction materials, and control features.

Manufacturers cater to the distinct requirements of residential and industrial users by producing a wide variety of induction motors tailored to each application. This adaptability allows for the efficient use of induction motors in diverse settings, from small-scale residential applications to large-scale industrial operations.

In conclusion, induction motors can be successfully adapted for use in both residential and industrial settings by considering the specific requirements and optimizing the motor’s design and performance characteristics accordingly.

induction motor

What safety precautions should be followed when working with induction motors?

Working with induction motors requires adherence to proper safety precautions to minimize the risk of accidents, injuries, or equipment damage. Here are some important safety precautions to follow:

  • Electrical Safety:
    • Always de-energize the motor and ensure the power source is disconnected before working on or near the motor.
    • Use lockout/tagout procedures to secure the power source and prevent accidental energization during maintenance or repair work.
    • Wear appropriate personal protective equipment (PPE) such as insulated gloves, safety glasses, and electrical-rated footwear when working with live electrical components.
    • Follow electrical safety guidelines and local regulations when installing, wiring, or troubleshooting induction motors.
    • Ensure that the motor’s electrical connections are properly insulated and protected against accidental contact or short circuits.
  • Mechanical Safety:
    • Avoid wearing loose clothing, jewelry, or anything that can get entangled in moving parts of the motor.
    • Use machine guards, safety shields, or barriers to prevent accidental contact with rotating shafts, belts, or other hazardous motor components.
    • Ensure that the motor is securely mounted or fastened to prevent it from shifting or falling during operation.
    • Never reach into a running motor or attempt to make adjustments while the motor is in operation.
    • Allow the motor to come to a complete stop and wait for any residual motion to cease before performing maintenance tasks.
  • Heat and Ventilation:
    • Induction motors can generate heat during operation.
    • Avoid touching hot motor surfaces and allow sufficient cooling time before carrying out maintenance or inspection tasks.
    • Ensure that the motor’s ventilation system, including fans and cooling fins, is clean and unobstructed to prevent overheating.
    • Follow manufacturer guidelines for proper motor ventilation and cooling requirements.
  • Safe Lifting and Handling:
    • Induction motors can be heavy and require proper lifting and handling techniques.
    • Use appropriate lifting equipment and techniques to prevent strains or injuries when moving or installing motors.
    • Follow safe lifting practices and weight limits specified by the motor manufacturer.
    • Engage additional personnel or equipment if necessary to safely handle large or bulky motors.
  • Qualified Personnel:
    • Ensure that only qualified personnel with proper training and knowledge of induction motors are involved in installation, maintenance, or repair tasks.
    • Engage licensed electricians or technicians familiar with electrical safety procedures and motor handling practices.
    • Refer to motor-specific documentation, manuals, and guidelines provided by the manufacturer for proper handling, maintenance, and safety recommendations.
  • Documentation and Safety Guidelines:
    • Maintain records of motor-related safety procedures, maintenance activities, and incidents for future reference and continuous improvement.
    • Follow safety guidelines established by regulatory authorities, industry standards, and the organization’s safety policies.
    • Regularly review and update safety procedures and provide training to personnel to ensure awareness of safe practices when working with induction motors.

These safety precautions are essential for protecting personnel, preventing accidents, and maintaining a safe working environment when working with induction motors. It is crucial to prioritize safety at all times and comply with applicable safety regulations to mitigate risks associated with motor operation and maintenance.

induction motor

How do induction motors differ from other types of electric motors?

Induction motors differ from other types of electric motors in several ways. Here’s a detailed explanation of the key differences:

  • Operating Principle:
    • Induction motors operate based on the principle of electromagnetic induction, where a rotating magnetic field induced by the stator windings interacts with the rotor conductors to produce torque.
    • In contrast, other types of electric motors, such as DC motors, synchronous motors, and stepper motors, operate on different principles and have distinct mechanisms for generating motion.
  • Power Supply:
    • Induction motors typically operate on AC (alternating current) power supply. The stator windings are connected to an AC power source, which produces a rotating magnetic field.
    • On the other hand, DC motors require a DC power supply, and synchronous motors may operate on either AC or DC power supply, depending on their design.
  • Speed Control:
    • Induction motors have a fixed speed determined by the frequency of the AC power supply and the number of poles in the motor. The speed can be adjusted to some extent by changing the supply frequency or using variable frequency drives (VFDs).
    • DC motors, on the other hand, offer precise speed control by adjusting the voltage applied to the motor armature.
    • Synchronous motors can operate at a fixed speed determined by the frequency of the AC power supply, but they can also be controlled using specialized techniques such as field weakening or using electronic drives.
    • Stepper motors operate in discrete steps, allowing precise control of position and speed.
  • Construction:
    • Induction motors are typically constructed with a squirrel cage rotor, which consists of short-circuited conductive bars or loops. The rotor construction makes them simple, robust, and suitable for high-speed applications.
    • Other types of motors may have different rotor constructions, such as wound rotors in some AC motors or permanent magnets in brushless DC motors.
  • Starting Mechanism:
    • Induction motors are self-starting, meaning they can start without the need for additional starting mechanisms. The rotating magnetic field generated by the stator windings induces voltage and current in the rotor, enabling the motor to start rotating.
    • Some other types of motors, such as DC motors, require external starting mechanisms like starting resistors or electronic controls to initiate rotation.
  • Efficiency and Maintenance:
    • Induction motors are known for their high efficiency and low maintenance requirements. They have a simple construction with no brushes or commutators, which reduces wear and eliminates the need for regular maintenance.
    • Other types of motors, such as brushed DC motors, may require brush replacement and periodic maintenance.

These are some of the main differences between induction motors and other types of electric motors. Each type of motor has its advantages, disadvantages, and specific applications, depending on the requirements of the system or industry where they are used.

China wholesaler AC Premium Efficiency Electric Motor 415 660V Induction Electrical Motor   vacuum pump and compressor	China wholesaler AC Premium Efficiency Electric Motor 415 660V Induction Electrical Motor   vacuum pump and compressor
editor by CX 2024-04-26